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Practice Final Exam III

We strongly recommend that you work through this exam under realistic conditions rather
than just flipping through the problems and seeing what they look like. Setting aside three
hours in a quiet space with your notes and making a good honest effort to solve all the prob-
lems is one of the single best things you can do to prepare for this exam. It will give you prac-
tice working under time pressure and give you an honest sense of where you stand and what
you need to get some more practice with.

This practice final exam is essentially the final exam from Fall 2017, with one or two questions
swapped out for questions from previous quarter's final exams. The sorts of questions here are
representative of what you might expect to get on the upcoming final exam, though the point bal-
ance and distribution of problems might be a bit different.

The exam policies are the same for the midterms – closed-book, closed-computer, limited note
(one double-sided sheet of 8.5” × 11” paper decorated however you'd like).

You have three hours to complete this exam. There are 62 total points.

Question Points Graders

(1) Mathematical Logic and Set Theory / 8

(2) Functions and Binary Relations / 16

(3) Number Theory and Induction / 12

(4) Regular and Context-Free Languages / 10

(5) R and RE Languages  / 10

/ 56
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Problem One: Mathematical Logic and Set Theory       (8 Points)
(Final Exam, Spring 2015)

i. (5 Points) Suppose we have the predicates

• Person(p), which states that p is a person, and
• Loves(p, q), which states that p loves q.

Below are a series of five English statements paired with a statement in first-order logic. For each
statement, decide whether the corresponding formula in first-order logic is a correct translation of
the English statement and check the appropriate box. There is no penalty for an incorrect guess.

Everyone loves themselves.
∀p. (Person(p) →
    ∀q. (Loves(p, q) → p = q)
)

      ☐ Correct

      ☐ Incorrect

There are two people that
everyone loves.

∀r. (Person(r) →
    ∃p. (Person(p) ∧
        ∃q. (Person(q)  ∧ q ≠ p ∧
            Loves(r, p)  ∧ Loves(r, q)
        )
    )
)

      ☐ Correct

      ☐ Incorrect

Love is a transitive relation
over the set of people.

∀p. (Person(p) ∧
    ∀q. (Person(q) ∧
        ∀r. (Person(r) ∧
            (Loves(p, q)  ∧ Loves(q, r) →
                Loves(p, r)
            )
        )
    )
)

      ☐ Correct

      ☐ Incorrect

No two people love exactly
the same set of people.

∀p. (Person(p) →
    ∀q. (Person(q)  ∧ q ≠ p →
        ∃r. (Person(r) ∧
            (Loves(p, r) ↔ ¬Loves(q, r))
        )
    )
)

      ☐ Correct

      ☐ Incorrect

Someone doesn't love anyone.
¬∀p. (Person(p) →
    ∃q. (Person(q)  ∧ Loves(p, q))
)

      ☐ Correct

      ☐ Incorrect
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In a mathematical sense, we can think of a committee as a set whose elements are the people on
that committee. This lets us talk about different committees in the language of set theory.

ii. (3 Points) Let S be the set of all people in the United States, R be the set of all Republi-
cans, and D be the set of all Democrats. Using set theory notation (e.g. , , , , etc.),∪ ⊆ ℘ ∈
but  without using set-builder notation and  without using first-order logic, write an ex-
pression that represents the set of all possible committees of people from the US that in-
clude at least one Democrat and at least one Republican.

As before, remember that some people may be neither Republicans nor Democrats.
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Problem Two: Functions and Binary Relations  (16 Points)
(Final Exam, Fall 2017)

On Problem Sets Three and Four you explored different properties of strict orders. Although
strict orders come in all sorts of shapes and flavors, there is a single strict order that’s, in some
sense, the “most fundamental” strict order: the strict subset relation. In this problem, you’ll show
that every strict order’s behavior can be thought of as the behavior of the strict subset relation
over some well-chosen collection of sets.

Let R be a strict order over a set A. Consider the function f : A → (℘ A) defined as follows:

f(x) = { y  ∈ A   |   y = x  or  yRx }

This function f connects the relation R over A to the relation  ⊊ over (℘ A).

i. (6 Points) Prove for all a, b  ∈ A that if f(a)  ⊊ f(b), then aRb. As a reminder, the notation S
 ⊊ T means that S  ⊆ T and that S ≠ T.

Feel free to use the space below for scratch work. There’s room for your answer to this
question on the next page of this exam.
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(Extra space for your answer to Problem Two, Part (i), if you need it.)
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As a refresher from the previous page, we’ve let R be a strict order over a set A and defined the
function f : A → (℘ A) as follows:

f(x) = { y  ∈ A   |   y = x  or  yRx }

ii. (10 Points) Prove for all a, b  ∈ A that if aRb, then f(a)  ⊊ f(b). Again, the notation S  ⊊ T
means that S  ⊆ T and that S ≠ T.

Feel free to use this space for scratch work. There’s room to write your answer to this
question on the next page of the exam.
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(Extra space for your answer to Problem Two, Part (ii), if you need it.)
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Problem Three: Number Theory and Induction  (12 Points)
(Midterm Exam, Fall 2018)

On Problem Set Four, you explored recurrence relations and number theory. This problem is de-
signed to give you a chance to demonstrate what you’ve learned in the process.

Let’s begin with a refresher on some definitions. First, if x and y are integers, we say x divides y
if there is an integer q such that y = xq. Second, if a and b are integers, we say that a  b⊥  (a and b
are coprime) if the only integers that divide both a and b are ±1.

i. (5 Points) Let a and b be arbitrary integers. Prove that if a  b⊥ , then a+b  ⊥ a.
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(Extra space for your answer to Problem Four, Part (i), if you need it.)
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The Fibonacci numbers are a sequence of natural numbers defined by the following recurrence
relation:

F  = 0₀

F  = 1₁

Fn+2 = Fn+1 + Fn.

The first few terms of the Fibonacci sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, … .

This question explores a nifty property of the Fibonacci numbers.

ii. (7 Points) Using your result from part (i), prove that Fn ⊥ Fn+1 for every n  ∈ ℕ. Remem-
ber that 0  ∈ ℕ.

Just for fun: this result, combined with what you learned on Problem Set Five, says that
the star {Fn+1 / Fn} is a simple for any natural number n. As you can see, these stars are
very pretty!

{5 / 3} {8 / 5} {13 / 8} {21 / 13}
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(Extra space for your answer to Problem Three, Part (ii), if you need it.)
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Problem Four: Regular and Context-Free Languages      (10 Points)
(Final Exam, Fall 2017)

Let Σ = { h, i, m, r, t } and consider the following language L :₁

L  = { ₁ w  Σ* | ∈ w is a substring of mirth }.

Recall that a substring is a contiguous range of characters taken out of an original string. For ex-
ample, mir  ∈ L , ₁ irt  ∈ L₁, ε  ∈ L , ₁ t  ∈ L , and ₁ mirth  ∈ L , but ₁ mrh  ∉ L  (although the letters₁
in mrh appear in mirth, they’re not contiguous), it  ∉ L  (for the same reason ₁ mrh is not in L ),₁
and mmm  ∉ L  (because there aren’t three consecutive ₁ m’s in mirth).

i. (3 Points) Design an NFA for L . In the space at the bottom of the page, write a brief ex₁ -
planation (at most two sentences) for how your NFA works.

Explanation for this NFA (at most two sentences):
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On Problem Set Five, you explored languages involving taking a walk with your dog. The next
two parts of this problem concern more of the challenges of pet ownership.

Imagine that you and your dog are taking a walk and you have a leash that’s six units long. Un-
like before, you and your dog don’t move at the same speed. Every time your dog takes a step,
your dog moves three units forward, and every time you take a step, you move two units forward.

Let Σ = {y, d}, where y represents you taking a step (which moves you two units forward) and d
represents your dog taking a step (which moves your dog three units forward) and consider the
following language:

         L  = { ₂ w  Σ*  |∈ w represents a walk where you and your dog end at the same position,
you and your dog are never more than six units apart, and
you never are ahead of your dog. }

For example, the string ddyyy  ∈ L , as are ₂ dydydydyyy, ε, dydyyddyyy, and dydydyydyy. How-
ever, the string yddyy  ∉ L  (since after the first step you end up ahead of your dog), the string₂
ddyddyyyyy  ∉ L  (at the underlined point, your dog is more than six units ahead of you), and the₂
string dy  ∉ L  (your dog ends up one unit ahead of you).₂

ii. (4 Points) Design a DFA for L . At the bottom of the page, write a very brief explanation₂
(at most two sentences) about how your DFA works.

Explanation for this DFA (at most two sentences):
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Now, let’s imagine that you’re taking your dog for a walk but you take off the leash. As before,
every time your dog takes a step it moves three units forward, and every time you take a step you
move two units forward.

Let Σ = {y, d}, where y represents you taking a step (which moves you two units forward) and d
represents your dog taking a step (which moves your dog three units forward) and consider the
following language L :₃

       L  = { ₃ w  Σ*   |∈ w represents a walk where you and your dog end at the same position
and you never are ahead of your dog. }

This is essentially the same language as L , except without the leash restriction. This language is₂
not regular, and in this problem we’d like you to convince us why this is.

iii. (3 Points) To save you time, rather than having you write out a full proof that L  is not₃
regular, we’d instead like you to answer the following questions:

1. The Myhill-Nerode theorem requires you to choose an infinite set S of strings that are
pairwise distinguishable relative to L . In the space below, write such a set ₃ S.

2. Suppose you choose two arbitrary, distinct strings x and z from the set S. What string
w will you append to x and z to show that they are distinguishable relative to L ?₃

 

 

 

 

3. Briefly explain why the choice of w you found above shows that x and z are distin-
guishable relative to L .₃
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Problem Five: R and RE Languages             (10 Points)
(Final Exam, Fall 2011)

Most operating systems provide some functionality to detect programs that are looping infinitely.
Typically, they display a dialog box containing a message like these:

    

These messages give the user the option to terminate the program or to let the program keep run-
ning.

An ideal OS would shut down any program that had gone into an infinite loop, since these pro-
grams just waste system resources (processor time, battery power, etc.) that could be better spent
by other programs.

i. (3 Points) Since it makes more sense for the OS to automatically detect programs that
have gone into an infinite loop, why does the OS have to ask the user whether to termi-
nate the program or let it keep running?
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ii. (7 Points) Below is a Venn diagram showing the overlap of different classes of languages
we've studied so far. We have also provided you a list of numbered languages. For each
of those languages, draw where in the Venn diagram that language belongs. As an exam-
ple, we've indicated where Language 1 and Language 2 should go. No proofs or justifica-
tions are necessary, and there is no penalty for an incorrect guess.

RERREG

ALL

1

2

1. Σ*

2. LD

3. { w  {∈ a, b}* | w is not a palindrome }

4. { wxyxz | w, x, y, z  {∈ a, b}* and |x| = 5 }

5. { w  {∈ a, b, c, d, r}* | w is not a substring of abracadabra }

6. { w  {∈ a, b}* | there is a TM M where M loops on w }

7. { ⟨M  | ⟩ M is a TM that accepts 137  and rejects 42  }⟨ ⟩ ⟨ ⟩

8. { ⟨M  | ⟩ M is a TM that does not accept 137  or does not reject 42  }⟨ ⟩ ⟨ ⟩

9. { ⟨M, n  | ⟩ M is a TM, n ∈ ℕ, and M accepts at least one string of length n }


